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DOE’s Long Range Plan

RIA tied for 3rd highest priority for new 
large science facilities.

• DOE’s released its 20 year plan for new 
science facilities released on November 10, 
2003, by Secretary Abraham.

• Excerpt from Report:

“It will allow physicists to explore the 
structure and forces that make up the 
nucleus of atoms; learn how the chemical 
elements that make up the world around 
us were created; test current theories 
about the fundamental structure of 
matter; improve our ability to model the 
explosions of nuclear weapons, and play 
a role in developing new nuclear 
medicines and techniques.”
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Stockpile Stewardship

Stockpile Stewardship is DOE program to improve 
modeling capability of nuclear explosions.

Key challenge in past nuclear weapon tests is measuring neutron 
flux during test.

Answer: Use certain isotope as neutron flux monitors.

1. Load isotope into device.

2. Extract core sample after test and perform 
radiochemical processing.

3. Interpret measured isotope production to 
infer information about neutron flux 
(neutron cross-sections needed).

Key challenge at  present is to reduce uncertainty of interpretation.

Answer:  Improve quality of neutron cross-section data.
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Using Isotope Production To Determine Neutron Flux
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Reaction Networks Are Complex
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1. Most reactions involve unstable isotopes.

2. Most reactions have no data to verify calculation.
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Neutron Reactions Important to Stewardship
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Some Relevant Reaction Networks
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A number of different monitors 
have been used.

Almost all have isomers or very 
short lived nuclei.

Some reaction networks include 
isotopes of neighboring 
elements.

Not included in this list:

• Actinides – U, Np, Pu

• Prompt fission fragments
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Challenges of Neutron Cross-Section Measurements

Neutron cross-section measurements on unstable nuclei are 
difficult because of low event rates and high background rates.

Neutron flux typically much smaller than charge particle beam fluxes.

• Flux of RNTS-2 at 10 cm from production target: 5x1010 n/cm2/s.

• Flux of 1 pnA charge particle beam with 2 mm beam spot: 2x1011

p/cm2/s.

• Difficult to manipulate neutrons after production.

Number of target atoms small because of short half-life.

• Largest production rates at radioactive beam facilities is 1012 pps.

• 1012 pps implies 1017 atom limit for isotope with one day half-life.

Nuclear cross-sections are small, typically 0.1-1 barn.

1017 atoms of one day half-life implies 1000 decays per nanosecond.
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Example of Surrogate Reaction Technique
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σn,x = Px σabsorption
89Zr

See L. Bernstein 
talk on Tuesday

• Technique measures decay probabilities, Px (shape of cross section).

• Normalization required from optical model or direct measurement
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The Surrogate Reaction Technique – Advantages and Issues

Advantages

• Avoids neutron beams

• Simultaneous measurement of all reactions on single nuclei

• Simultaneous measurement at all energies.

• Depending on what reactions can be used

– Simultaneous measurement of reactions on several nuclei

– Avoids radioactive targets

Issues

• Normalization: Direct measurement or Optical Model?

• What reactions can be used?

• What range of energies?

• Practicality of technique in reverse kinematics?



Surrogate WS 12-Jan-2004 11

Reach of Stable Beam Surrogate Experiments

Lutetium network (A=170-179) and adjacent nuclei
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Hf

Lu

Yb

naturally occurring 1 day – 10 y half-life < 1 day half-life

• d,p reactions require same target as direct neutron experiments

• neutron surrogate reactions such (3He,α), (α,α’) expand reach

• surrogate reactions involving proton transfer maximize surrogate extent
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RIB Facilities and Direct Measurements

RIB facilities in general and RIA specifically will enable direct neutron 
cross-section measurements on many short lived nuclei

Production Rate vs. Half-life

• Maximum production rate from 
present and planned radioactive ion 
beam facilites: 1012-13. 

• 10 µg of material should be enough 
to do most measurements.  

• Some can be done with less 
material, though few could be done 
with less than 1 µg.

• One measurement – one energy 
point

Several direct measurements plus surrogate measurement would be 
most efficient way to obtain data for all reactions and all energies 
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Prompt Fission Fragments

Monitoring fission is also important to stockpile stewardship
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How do subsequent neutron reactions change fission fragment distribution?

Half-life of nuclei too short for target formation – indirect method needed
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Surrogate Reactions and Radioactive Ion Beam Facilities

Surrogate reaction technique in inverse kinematics would allow 
data to be obtained that could be obtained in no other way
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Summary

• Stockpile Stewardship requires better knowledge of neutron 
cross-section information for many unstable nuclei.

• The Surrogate method offers an alternative to direct neutron 
cross-section experiments.

• The Surrogate method could allow information of neutron 
cross-section on unstable nuclei to be obtained by stable 
target charge particle beam experiment.

• The Surrogate method could also allow data to be obtained at 
RIB facilities that could not be obtained in any other way. 
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